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TABLE I

REsISTANCE VALUES FOR THREE-PorT HYBRIDS USING
TAPERED IMPEDANCE TRANSFORMER SYSTEMS

Power division ratio, K? 1 2 3

Chebyshev taper Ri= 2.000 6.000 8.000
Ryr=200.000 228.750 252.193

Exponential taper Ry= 12.000 14.000 16.000
Ryr=212.000 234.750 260.193

these figures is limited but the results shown are typical for higher
frequencies as well. In Fig. 4 the frequency scale is normalized to the
lower cutoff frequency in gigahertz when the maximum reflection
coefficient is 0.05. The characteristics for K2>1 are very similar to
those shown in Fig. 4 with the isolation showing about a 2-3-dB
improvement and the VSWR’s for ports 2 and 3 being less than 1.09.
In Fig. 5, the frequency scale is normalized to gl==, where the
electrical length (7) of the taper is 15 cm. Again, the characteristics
for K2>1 are similar to those plotted in Fig. 5. The magnitude of the
peak VSWR (above cutoff) for port 1 increases as K? increases due to
the fixed length of  but remains less than 1.2. VSWRs for ports 2 and
3 have peak values less than 1.15 and the isolation shows an improve-
ment of about 2 dB.

CoNcLUSION

The work reported here has extended the analysis of the N-port
hybrid to include the use of tapered transmission lines. It has also
been shown that the required isolation can be provided by a linear
distribution of resistances along the length of the taper. A theoretical
limit on the VSWR and isolation characteristics has been presented,
along with designs that closely approach this limit. Generally, it has
been found that the VSWR and isolation characteristics of the un-
equal power divider /summer are closely similar to those of the equal
power divider /summer.

APPENDIX

ANALYSIS OF THE N-PorT HYBRID FOR
ARrBITRARY PowER Division

When the N-port hybrid is used for uneven power division, the
fractional power level in each arm is determined by the relative
admittance of each arm. Therefore, in the equivalent circuit, the
divider port characteristic admittance is split into separate admit-
tances such that, at the reference plane of the junction, (Fig. 1, U)
we find the following.

1) The ratio of the admittance of that branch to the characteristic
admittance of the divider port is equal to the fractional power level
in that branch; i.e.,
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2) The parallel combination of the input admittance of the
branches is equal to the divider port characteristic admittance:

Vo=VYio+ Yis+ -+ Vr )

Since the sum of the fractional divided powers equals unity when
the matched condition (9) exists,
N
Z K;=1 (10)
=2
Now the analysis of Parad and Moynihan [2] can be adapted to
the N-branch case if we consider that the effect on branch 2 of all the
other branches: 3, 4, - - -, N, combined, has to be equivalent to the

effect of the third branch on the second branch for the three-branch
hybrid. From this reasoning, it readily follows that the output im-
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pedances Ry, Ry, - - - , Ry should be chosen to be
Ry=Znv(Ks+Ka+ -+ + Kn)/Ks
Ry=Zo/(Ky + Ka + Es + - - - + Ex)/Ks
Ry = 201\/(K2 + Kg 4+ - KN~1)/KN (11)

so that the characteristic admittances of the quarter-wave trans-
formers in arms 2, 3, - - -, N are '

Yoo = /' VisGo Yoo/ Ks[Ko/(Ks + Ky + - -+ + Kw)]72

Voo = v VisGs = Vors/Ka[Ks/ (Ko + Ku+ - - - + Kn)]'72
Yor = V/YixGy = Yors/K[Kn/(Ks + K5 + - -+ + Exp)]"% (12)
The isolation resistors required are thus
Ri=Zuv(Ks+ Ks+ - + Kn)/K2
Ris=ZovV(Ke+ Ks+ - - - + Kn)/Ks
Ry =2ZuvV(Ks+ Ks+ -+ -+ Knva)/Kn (13)
for the special case of a three-port hybrid, we have
K? = K;/Ko. (14)
R. P. TETARENKO
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A Wide-Band Nearly Constant Susceptance
Waveguide Element

Abstract—Experimental results are presented for a movable
metal iris which exhibits a nearly frequency-independent suscep-
tance. This characteristic is related to the susceptance of a centered
capacitive obstacle in a waveguide modified by an empirical fre-
quency-dependent correction factor.

Work with waveguide cavities for solid-state microwave devices
has led to a movable iris characterized by a shunt susceptance that is
nearly constant with frequency. The iris is constructed of a thin rec-
tangular metal strip mounted on a low-loss foam plastic block, as
shown in Fig. 1. The block has the same dimensions as the interior of
the waveguide and is made long enough to prevent the metal strip
from becoming skewed with respect to the waveguide walls. The
shim is centered on the foam block, so there is no metal-to-metal
contact.,

y
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Fig. 1. Noncontacting iris.

The experimental work was done at X band, with internal wave-
guide dimensions 0.900 by 0.400 in. Six irises were constructed with
foam blocks 1-1/2 in long. The metal strip dimensions for each iris
are listed in Table 1.

The foam block used has a low dielectric constant (e~ 1.05), and
its effect may be neglected. The thin metal shim may be represented
by a single shunt susceptance across the waveguide. In general, thin
discontinuities parallel to the broad dimension of the waveguide are
represented by shunt capacitances, and discontinuities parallel to
the narrow dimension are represented by shunt inductances [1]. The
shim exhibits discontinuities along both dimensions, but the gap
widths are small. For TE;p mode excitation an electric field will be
excited in the gaps parallel to the broad dimension. The energy
stored in the gaps parallel to the narrow dimension of the waveguide
will be small since the only significant contribution to the stored
energy is due to very high order modes far from cutoff. For this rea-
son the junction can be effectively characterized as a shunt capaci-
tance.

This is verified by the experimental results which are plotted as
normalized susceptance as a function of frequency in Fig. 2. The
susceptance is capacitive and its magnitude is largely controlled by
the b’ dimension. Reducing 4’ lowers the susceptance. The magnitude
of the susceptance is approximately the same as that of a centered
capacitive obstacle of height &’. The primary effect of the gap parallel
to the narrow dimension is to modify the frequency dependence of
the capacitance. The resulting susceptance is nearly frequency-
independent over the X band.

Several attempts were made to calculate an approximate ex-
pression for the iris susceptance. Due to the fact that the iris is dis-
continuous in both transverse dimensions as well as along the wave-
guide axis, no simple solution could be obtained. In order to obtain
a closed form result suitable for design purposes it was decided to use
the calculated susceptance for a capacitive obstacle modified by an
empirical correction factor.

The solution is in the form of (1)

B; = yB, (1)

where B; is the experimental susceptance of the iris, v is the empirical
correction factor, and B, is the susceptance of a centered capacitive
obstacle of height b’. The quantity B, is obtained from Marcuvitz
[2] for the case of the gap much smaller than the narrow dimension
of the waveguide. The expression is given in (2),

}31_4b31 (Zb Lt (mz 2
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where d is the total gap not filled by the metal obstacle. A correction
for the thickness of the obstacle is required so d was taken empirically
to be
d=b—b —1 3)

where ¢ is the thickness of the metal shim. In this case, £=0.020 in,
which was not negligible in comparison with the gap dimensions.
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Fig. 2. Comparison between experimental and empirical results.
TABLE I
Irrs DIMENSIONS WITH £=0.020 in
Iris a’ (inch) b" (inch)
1 0.70 0.35
2 0.70 0.25
3 0.70 0.30
4 0.80 0.30
5 0.65 0.30
6 0.55 0.30

For thicker irises the theory given by Marcuvitz [2, p. 251] would
be required.

The multiplicative correction factor v is a dimensionless quantity
greater than unity, and is largest at the low end of the frequency
band since the susceptance calculated for a capacitive obstacle ap-
proaches the measured susceptance as frequency increases. This re-
sults in a dependence on Ag in the correction factor. It is also required
that y—1 as ¢’ —a, since the iris becomes a capacitive obstacle in that
limjt. The form of the correction factor was determined empirically,
with the result given in (4)

> I

The values of B; obtained by substituting (4) into (1) are plotted
as the solid curves in Fig. 2. The results are for the first four irises.
The experimental data points are also plotted, and the agreement is
seen to be quite good. Irises 5 and 6 are not shown, as the two cases
are similar and the experimental data lack sufficient accuracy to dis-
tinguish between them. Over the range 0.6< (a'/2) <1, the accuracy
of (1), using (4) is better than +8 percent, cotnpared to the experi-
mental results. '

The movable iris described here has been shown to provide a
nearly-constant capacitive susceptance over the X band. It has been
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used in coupling structures for solid-state oscillators and in wave-
guide filter and impedance matching applications. The noncontacting
movable-susceptance element is easy to realize and should find
application in numerous laboratory devices.

J. G. Bryan?

F. ]J. RosEnNBAUM
Elec. Eng. Dep.
Washington Univ.
St. Louis, Mo. 63130
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A Class of Equiripple Functions which Complement
the Achieser (or Zolotarev) Polynomials

Abstract—A symmetrical cascade of N commensurate transmis-
sion lines having equal ripple performance over a passband centered
at the quarter-wavelength frequency may be synthesized using
Achieser (or Zolotarev) polynomials for N odd. This correspondence
identifies the solution of the case where N is even, and a new class
of functions which complement these polynomials is identified.

Levy [1] has made available for engineering use a class of odd
polynomials, discovered by Achieser [2] which are equiripple in two
symmetrical line segments [—~1, —A}and [\, 1]. These polynomials,
however, do not completely solve the approximation problem for
equiripple performance from a symmetrical cascade of equal-length
transmission line elements (TLEs), all with the same propagation
constant and electrical length .

As the author [3] has observed, the insertion loss function, Pz,
of such a cascade may be written

Py =14 [sin 6Qx_1 (cos 6) ]2 = 1 4 Py?sin 6, cos 0) @

where N is the number TLEs. More specifically, Qw.1(cos 8) is an
even function of cos 6 for N odd and an odd function of cos ¢ for N
even. For N odd, putting x =sin @ and x% =1 —cos28,

sin 8Qn_1(cos 8) = Px(sin ) 2)

where Py(x) is an odd polynomial. When sin #=1 at midband, it is
readily seen that the Achieser polynomials will give equiripple per-
formance over a given band centered at the quarter-wave frequency
with band edges at # =sin™'/2 X and 6 == —sin~! \. The polynomials of
degree N =2n, which are equiripple in the same intervals are

[(Ta20® — 1 = N2)/(1 — \%)] @

but the Ps,(sin 6) which is appropriate to the bandpass case cannot
be expressed in this form.*

It is the object of this correspondence to identify the missing
functions and so solve the approximation problem for equal-ripple
behavior for cascades of the type under consideration. For N even,
we require a function

P2n<x) = 90\/1_.;_—9; Qn-l(zz) (47)

which is equiripple over the given intervals of x, where Q. is a
polynomial of degree # —1 with real coefficients. Then with x =sin 8,

Manuscript received March 4, 1971; revised June 14, 1971.
1 For a problem in which these classes of polynomials do complement each
other see [4].
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the function Pa(x) will give equiripple performance over a band
centered at §==/2 and the synthesis will result in a symmetrical
cascade having an even number of TLEs.

The functions (4) are defined parametrically by

A HM + )\ (HM — )\

Px(x) = 2_] (HfM _ u)) - (H(M + u) ] ®)
g NenG) (©)
RV, =y o)

where A=sn M, K is the complete elliptic integral of the first kind,
and all the periodic functions have a common modulus, k, chosen to
satisfy the equation, NM =K.

The elliptic function in (5) is clearly of the type used by Zolotarev
[5] in his problem. It has however “sine like” form rather than the
familiar “cosine like” equiripple form. For this reason, and because
no other justification is given for its correctness, the analytic fea-
tures of the following proof are more detailed than those given by
Achieser [2] and Levy [1] while, in the interest of brevity, the formal
features are left to the reader.

In the first place, (6) maps the interior of the rectangle, on a
properly defined Riemann surface, #, bounded by (0+jK’) and
(K + jK'’) into the upper half of the x plane while the transformation

K
y = f..(y___l__u_)_ %)

o5

maps the same rectangle in the # plane into the exterior of the unit
circle in the y plane. Fig. 1 establishes the location of points in the y
plane which correspond to the points of greatest interest in the x
plane, as shown in [1, Fig. 3].

For | x| between A and 1, (5) can be written

Py(x) = 1m [y~]. &

Thus as |«| decreases from 1 to A, Py(x) oscillates #n—1 times be-
tween -+1, taking on the value at A, Im [¢/"»H]= + 1, depending on
whether 7 is even or odd; so that Py(x) has the required equiripple
performance in the bands of interest.

It remains to show that it has the required form and it will be
convenient to write,

_ s (M) cn (u) ©
vsn? (M) — sn? (u)

and

so JonUDsn @)

V1= &? (10)
Vesn? (M) — sn? ()



