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TABLE I

RESISTANCE V&Um FOR THREE-PORT HYBRIDS USING
TAPERED IMPEDANCE TRANSFORMER SYSTEMS

Power division ratio, K~ 1 2 3

Chebyshev taper R,= 2.000 6.000 8.000
R~=200.000 228.7.50 252.193

Exponential taper R,= 12.000 14,000 16.000
R~=212.000 234.750 260.193

these figures is limited but the results shown are typical for higher

frequencies aswell. In Fig. 4thefrequency scale isnormalized to the

lower cutoff frequency in gigahertz when the maximum reflection

coefficient is 0.05. The characteristics for Kz>l are very similar to

those shown in Fig. 4 with the isolation showing about a 2–3-dB

improvement andthe VSWR’sforports2 and3being less than 1.09.

In Fig. 5, the frequency scale is normalized to pl=r, where the

electrical length (1) of the taper is 15 cm. Again, the characteristics

for K2 >1 are similar to those plotted in Fig. 5. The magnitude of the

peak VSWR (above cutoff) for port 1 increases as KZincreases due to

the fixed length of 1but remains less than 1.2. VSWRS for ports 2 and

3 have peak values less than 1.15 and the isolation shows an improve-

ment of about 2 dB.

CONCLUSION

The work reported here has extended the analysis of the N-port

hybrid to include the use of tapered transmission lifies. It has also

been shown that the required isolation can be provided by a linear

distribution of resistances along the length of the taper. A theoretical

limit on the VSWR and isolation characteristics has been presented,

along with designs that closeIy approach this limit. Generally, it has

been found that the VSWR and isolation characteristics of the un-

equal power divider/summer are closely similar to those of the equal

power divider/summer.

APPENDIX

ANALYSIS OF THE N-PORT HYBRID FOR

ARBITRARY POWER DIVISION

When the N-port hybrid is used for uneven power division, the

fractional power level in each arm is determined by the relative

admittance of each arm. Therefore, in the equivalent circuit, the

divider port characteristic admittance is split into separate admit-

tances such that, at the reference plane of the junction, (Fig. 1, U)

we find the following.

1) The ratio of the admittance of that branch to the characteristic

admittance of the divider port is equal to the fractional power level

in that branch; i.e.,

P, Y%2
—.—— . Ki
P, Yol

P3 Y43
—=— . KZ...~=~yi~=KN.
PI Yol

(8)

2) The parallel combination of the input admittance of the

branches is equal to the divider port characteristic admittance:

Y~, =ri, +Yi3+. ..+ iNiN. (9)

Since the sum of the fractional divided powers equals unity when

the matched condition (9) exists,

~Kj=l. (lo)

Now the analysis of Parad and Moynihan [2] can be adapted to

the N-branch case if we consider that the effect on branch 2 of all the

other branches: 3, 4, . . . , N, combined, has to be equivalent to the

effect of the third branch on the second branch for the three-branch

hybrid. From this reasoning, it r?adil~ follows that the output im-

pedances Rz, RS, . . . , RN should be chosen to be
—..—

R, = ZO,l/(K~ + K4 + . . . + KN)/K~
———

R, = Z,,<(h’, + K4 + K5 + 0.. + il-N)/K,

. . . . . . . . . . . . . . . . . . . . .

RN = Z,,<(K, + Ka + . . . KN.1)/KN (11)

so that the characteristic admittances of the quarter-wave trans-

formers in arms 2, 3, . ~ . , N are

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
_—___

YoN = 4 Y,NGN = l“ow’KN[K.v/(Kx + K3 + . . . + KN-J]72. (12)

The isolation resistors required are thus

R,, = Z,, 4~K, + K4~Y+~/z”i

1<,, = ZO,~(K, + K,+ . . . + K.v)IK,

. . . . . . . . . . . . . . . . . . .

R,N = Zol~(K2 + K:+ + . + KN-1)/KN (13}

for the special case of a three-port hybrid, we have
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A Wide-Band Nearly Constant Suscepta.nce

Waveguide Element

Abstracf—Experihzental results are presented for a movable

metal iris which exhibits a nearly frequency-independent suscep-

tance. Thh4 characteristic is related to the susceptance of a centered

capacitive obstacle in a waveguide modified by am empirical fre-

quency-dependent correction factor.

\Vork with waveguide cavities for solid-state microwave devices

has led to a movable iris characterized by a shunt wsceptance that is

nearly constant with frequency. The iris is constructed of a thin rec-

tangular metal strip mounted on a low-loss foam plastic block, as

shown in Fig. 1. The block has the same dimensions as the interior of

the waveguide and is made long enough to prevent the metal strip

from becoming skewed with respect to the waveguide walls. The

shim is centered on the foam block, so there is no metal-to-metal

contact.

Manuscript received March 3, 1971, revised June 7, 197 ~.
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Fig. 1. N’oncontacting iris.

The experimental work was done at X band, with internal wave-

guide dimensions 0.900 by 0.400 in. Six irises were constructed with

foam blocks 1–1 /2 in long. The metal strip dimensions for each iris

are listed in Table I.

The foam block used has a low dielectric constant (,= 1.05), and

its effect may be neglected. The thin metal shim may be represented

by a single shunt susceptance across the waveguide. In general, thin

discontinuities parallel to the broad dimension of the waveguide are

represented by shunt capacitances, and discontinuities parallel to

the narrow dimension are represented by shunt inductances [1]. The

shim exhibits discontinuities along both dimensions, but the gap

widths are small. For TElo mode excitation an electric field will be

excited in the gaps parallel to the broad dimension. The energy

stored in the gaps parallel to the narrow dimension of the waveguide

will be small since the only significant contribution to the stored

energy is due to very high order modes far from cutoff. For this rea-

son the junction can be effectively characterized as a shunt capaci-

tance.

This is verified by the experimental results which are plotted as

normalized susceptance as a function of frequency in Fig. 2. The

susceptance is capacitive and its magnitude is largely controlled by

the b’ dimension. Reducing b’ lowers the susceptance. The magnitude

of the susceptance is approximately the same as that of a centered

capacitive obstacle of height b’. The primary effect of the gap parallel

to the narrow dimension is to modify the frequency dependence of

the capacitance. The resulting susceptance is nearly frequency-

independent over the X band.

Several attempts were made to calculate an approximate ex-

pression for the iris susceptance. Due to the fact that the iris is dis-

continuous in both transverse dimensions as well as along the wave-

guide axis, no simple solution could be obtained. In order to obtain

a closed form result suitable for design purposes it was decided to use

the calculated susceptance for a capacitive obstacle modified by an

empirical correction factor.

The solution is in the form of (1)

Bi = YBG (1)

where 3; is the experimental susceptance of the iris, y is the empirical

correction factor, and B. is the susceptance of a centered capacitive

obstacle of height b’. The quantity B. is obtained from Marcuvitz

[2] for the case of the gap much smaller than the narrow dimension

of the waveguide. The expression is given in (2),

%=3’43++(3
++- (:)’ [1 - + g)’]’[ (2)

where d is the total gap not filled by the metal obstacle. A correction

for the thickness of the obstacle is required sod was taken empirically

to be

d= b–b’–t (3)

where t is the thickness of the metal shim. In this case, t =0.020 in,

which was not negligible in c~rnp~r~so~ ~itb the gap dimensions.

45

t

Bls[l++ (l-:1’/4(+)*]ac
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Fig. 2. Comparison between experimental and empirical results,

TABLE I

IRIS DIMENSIONS WITH t= 0.020 in

Iris a’ (inch) b’ (inch)

0.70
;

0.35
0.70 0.25
0.70

:
0.30

0.80 0.30
5 0.65 0.30
6 0.55 0.30

For thicker irises the theory given by Marcuvitz [2, p. 251] would

be required.

The multiplicative correction factor 7 is a dimensionless quantity

greater than unity, and is largest at the low end of the frequency

band since the susceptance calculated for a capacitive obstacle ap-

proaches the measured susceptance as frequency increases. This re-

sults in a dependence on & in the correction factor. It is also required

that y~l as a’~a, since the iris becomes a capacitive obstacle in that

limit. The form of the correction factor was determined empirically,

with the result given in (4)

‘= ‘++(1-:)”(3 (4)

The values of B~ obtained by substituting (4) into (1) are plotted

as the solid curves in Fig. 2. The results are for the first four irises.

The experimental data points are also plotted, and the agreement is

seen to be quite good. Irises 5 and 6 are not shown, as the two cases

are similar and the experimental data lack sufficient accuracy to dis-

tinguish between them. Over the range 0.6< (a’/a) <1, the accuracy

of (1), using (4) is better than & 8 percent, cofnpared to the experi-

mental results.

The movable iris described here has been shown to provide a

nearly-constant capacitive susceptance over the x band. It has been
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used in coupling structures for solid-state oscillators and in wave-

guide filter and impedance matching applications. The noncontacting

movable-susceptance element is easy to realize and should find

application in numerous laboratory devices.
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Class of Equiripple Functions which Complement

the Achieser (or Zolotarev) Polynomials

Abstract—A symmetrical cascade of N commensurate transmis-

sion lines having equal ripple performance over a passband centered

at the quarter-wavelength frequency may be synthesized using

Achleser (or Zolotarev) polynomials for N odd. This correspondence

identifies the solution of the case where N is even, and a new class

of functions which complement these polynomials is identified.

Levy [1] has made available for engineering use a class of odd

polynomials, discovered by Achieser [2] which are equiripple in two

symmetrical line segments [ — 1, — h ] and [k, 1 ]. These polynomials,

however, do not completely solve the approximation problem for

equiripple performance from a symmetrical cascade of equal-length

transmission line elements (TLEs), all with the same propagation

constant and electrical length O.

As the author [3] has observed, the insertion loss function, PL,

of such a cascade may be written

F’L = 1 + [sin fTQ~_l (COS6’)]’ = 1 + P~2(sin 0, cos O) (1)

where N is the number TLEs. More specifically, Q~-1 (COS O) is an

even function of cos 0 for N odd and an odd function of cos o for N

even. For N odd, putting x =sin o and Xz = 1 —cosz 8,

sin 61Q~_1(cos @) = P~(sin O) (2)

where PN (x) is an odd polynomial. When sin o = 1 at midband, it is

readily seen that the Achieser polynomials will give equiripple per-

formance over a given band centered at the quarter-wave frequency

with band edges at o = sin-112 h and o = r —sin–l h. The polynomials of

degree N= 2n, which are equiripple in the same intervals are

[(Tn2& -1- x’)/(1 - x’)] (3)

but the P,n(sin O) which is appropriate to the bandpass case cannot

be expressed in this form.1

It is the object of this correspondence to identify the missing

functions and so solve the approximation problem for equal-ripple

behavior for cascades of the type under consideration. For N even,

we require a function

P%(x) = a+l – 2 @,t-, @ (4)

which is equiripple over the given intervals of x, where Qn–l is a

polynomial of degree n – 1 with real coefficients. Then with x = sin O,

Manuscript received March 4, 1971; revised June 14, 1971.
1 For a problem in which these classes of polynomials do complement each

other see [4].
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Fig. 1. Map of real axis of x ~lane.

the function P1. (x) will give equiripple performance over a band

centered at o = Ir/2 and the synthesis will result in a symmetrical

cascade having an even number of TLEs.

The functions (4) are defined parametrically by

‘N(’)‘W&3%%&+)”:] “)
k cn (u)

y . ——–— (6)
NA2 – snz (u)

where x = sn M, K is the complete elliptic integral of the first kind,

and all the periodic functions have a common mc)dulus, k, chosen to

satisfy the equation, NM =K.

The elliptic function in (5) is clearly of the type used by Zolotarev

[5] in his problem. It has however “sine like” form rather than the

familiar “cosine like” equiripple form. For this reason, and because

no other justification is given for its correctness, the analytic fea-

tures of the following proof are more detailed than those given by

Achieser [2] and Levy [1] while, in the interest of brevity, the formal

features are left to the reader.

In the first place, (6) maps the interior of the rectangle, on a

properly defined Riemann surface, u, bounded by (O +jK’) and

(K+ jK’) into the upper half of the x plane while the transformation

()H :+u

y= —

()
H :–u

(7)

maps the same rectangle in the u plane into the exterior of the unit

circle in the y plane. Fig. 1 establishes the location of points in the y

plane which correspond to the points of greatest interest in the x

plane, as shown in [1, Fig. 3 ].

For \ x I between x and 1, (5) can be written

p,JT(f) = h [jIn]. (8)

Thus as Ix] decreases from 1 to k, P~(x) oscillates n – 1 times be-

tween &1, taking on the value at 1, Im iejT@-*Jl = ~ 1, depending on

whether n is even or odd; so that PN (x) has the required equiripple

performance in the bands of interest.

It remains to show that it has the required form and it will be

convenient to write,

~ = _ sn (M) cn (u)

~sn’ (M) – sn’ (u)

and

j cn (M) sn (u)
1/1 — “1? = ——————-———.-

/sn’ (M) – sn’ (u)

(9)

(10)


